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J. Phys. A: Math., Nucl. Gen., Vol. 6, May 1973. Printed in Great Britain. Q 1973 

Current propagators and spectral sum rules for large and small 
momentum 

B R Wienke 
Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 
87544, USA 

MS received 3 October 1972, in revised form 27 November 1972 

Abstract. Expanding the current propagators in the small and large momentum limit, in 
both the free field and spectral representations, is shown to lead to Weinberg’s first sum 
rule for SU(3), or U(3), and either the Oakes-Sakurai or Das-Mathur-Okubo sum rules 
for cases ofcurrent or mass mixing, respectively. Resulting mass and coupling constant sum 
rules are listed for various choices of symmetry breaking and predictions of mixing angle 
and isovector masses for spin 1 and spin 0 mesons given. The method also allows systematic 
introduction of higher order symmetry breaking through the moment spectral integrals. 

1. Introduction 

Postulating nonets of vector and axial vector currents, V ; ( x )  and Ai(x) ,  with the local 
commutation relationships (p Lorentz indices, a, b unitary indices), 

[v:(x), vi(y)]6(xo-yo) = fabcv:(y)8(x-y)+ i6absdu6(x-y) 

[ v:(x), A:(y)]s(xo - Yo) = fabcA:(Y)6(x- y )  

[A:(x) ,  v8Y)16(xo - Yo) = - if,bcA:(y)6(x - Y) 

[A:(x), A~(Y)ls (xo  -Yo)  = fabcv:(y)6(x - y) + i6abvdP6(x-y) 

(1.1) 

with s and v symmetric c numbers and fabc the structure constants of SU(3) (or U(3)), 
insures that the twice integrated commutators satisfy the charge algebra originally 
postulated by Gell-Mann (1962, 1964). Furthermore, in the limit of conserved vector 
and axial vector currents, Weinberg (1967) showed s = U, which, using the now familiar 
spectral representation for the current propagators 

(01 TJi(x), J;(o)lo> d4X e-iq.x s 
+ Schwinger terms, (1.2) 

with J i ( x )  designating V i ( x )  or A i ( x )  and p(”(m2), p(0)(m2) the spin 1 and spin 0 spectral 
functions, leads to the chiral sum rule 
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6 50 B R Wienke 

where 1 +, 0-, 1-, and 0’ designate axial vector, pseudoscalar, vector and scalar meson 
unitary indices respectively. It is convenient to define the spin 1 and spin 0 current 
propagators independently in the spectral representation, dropping the signature I. 
since equations are applicable to both states, 

Schnitzer and Weinberg (1968) showed, using meson dominance in the broad sense 
(the momentum dependence of an n point function of currents arises from its meson 
poles almost entirely) and smoothness, that the inverse current propagators must be 
at most quadratic in four-momentum, suppressing also for the moment the unitary 
indices 

APv(q)-  - (U + /3q2)gPv + jiq’q”, (1.5) 

with U, 8, -j~ functions of the unitary indices. Obviously, this gives 

(a+ Pq2)APv(q) - guy - ?{U + ( P +  r ) q 2 }  ‘q’q’. ( 1.6) 

From the first of equations (1.4), we obtain a constraint 

(1.7) 

requiring qPAPv(q)  proportional to qy  so that, in equation (1.6), 

qPA”\(q) - ( “ + ( P + ; 1 ) q 2 ) - I q \  (1.8) 

and therefore P = - ;’. One can, therefore, associate APy(q)  with free-field propagators 
of masses ct/P and coupling constants ,!I- and cast the spin 1 and spin 0 propagators 
in the form, 

g” +pa- Iq’lqV 

U +  Pq2 
A”(q) = 

(1.9) 

with c and o playing roles similar to CY and p. Meson dominance, in addition to prescrib- 
ing a type of free-field behaviour for the propagators, implies single particle saturation 
of the spectral functions which, in the absence of mixing of unitary states, implies, 

(1.10) 

where g, and f ,  define the usual vacuum to single particle current matrix elements for 
the various meson states. To obtain further results in this scheme, i t  is necessary to 
make additional assumptions about the symmetry of the current propagators. In the 
following section we examine the large and small momentum expansions of the propa- 
gators and make the ansatz of current mixing and mass mixing for the spin 1 and spin 0 
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propagators and admit mixing of the octet and singlet states. The appendix gives a 
short discussion of mass and current mixing and types of symmetry breakings of interest. 

2. Sum rules and symmetry breaking 

The particular choices for symmetry breaking are made in the parameters U, p, E and w. 
The choice of U or E broken and p or o symmetric is called mass mixing, while the 
opposite, U or E symmetric and p or w broken, is called current mixing (Coleman and 
Schnitzer 1964, Kroll et a1 1967). The particular choices of breaking are left unspecified 
at this point, and the large and small q2 limits are first taken to obtain two types of sum 
rules involving these parameters. Taking the small and large q2 limits in equations 
(1.9) and equations (1.4), and equating yields, again suppressing the unitary indices on 
Awv, A, U, p, E, w, p( ' ) ,  and p('), 

lim Awv(q) z gwv(a-' -pu-2q2+ . . .)+ . . . 
42-0 

lim A(q) N (E-  ' - wr-2q2 +. . .) 
42-0 

= - i d m  2 ~ P'O'(m2)(1 + m- 2 q 2 +...) 
m2 

and, 

's dm2p'o)(m2)(1+m2q-2+. . .). 
q2 

Using the constraint implied by the chiral sum rule, equation (1.3), and equating 
coefficients of powers of q2 gives for the q2 -, 0 case 

(2.3) 
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and correspondingly for the q2 + a case 

dm2p(')(m2) = 0 - l  = c + x - '  = s + x - '  

dm2p")(m2)m2 = - 60-  ' s 
The first set of sum rules for the spin 1 mesons, corresponding to q2 + 0 are called 

the Oakes-Sakurai (OS) sum rules (Oakes and Sakurai 1967), while the second set, 
for q2 -+ x, are the Das-Mathur-Okubo (DMO) sum rules (Das et a1 1967). The OS 
set will lead to (mass)-2 sum rules and the DMO set to (mass)2 sum rules for spin 1 and 
spin 0 mesons. Consistent with the requirement of current mixing for spin 1 mesons 
and mass mixing for spin 0 mesons, we redefine the various constants appearing on 
the right hand sides of equations (2.3) and (2.4) and explicitly exhibit the dependences 
on the unitary indices. We write equations (2.3) and (2.4) in the final form, restoring 
specific use of the unitary indices, 

and 
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with dsab the symmetrical structure constants. The choice D = Cj8, E = -J2C/5 
represents 8 0 2 7  breaking (Chan et al 1969), while C = D = E = 0 gives octet breaking 
(Oakes 1968, Wienke and Deshpande 1969). The choice C = E = 0 gives octet-singlet 
splitting in U(3) (Schwinger 1964) and C = 0 represents octet splitting with mixing in U(3) 
(Das et al 1967). Other models may be incorporated by judicious choice of the para- 
meters A ,  B,  C, D and E. Results for the models indicated are given in the next section. 

The set of spin 1 sum rules has already been obtained using slightly different 
techniques (Oakes and Sakurai 1967, Das et a1 1967) from the algebraic expansion in q2 
employed herein. In addition to providing a simple and consistent derivation of the 
OS and DMO sum rules for both spin 1 and spin 0 mesons, this approach allows for 
systematic introduction of higher order symmetry breaking through the various 
moment (in m’) spectral integrals appearing as coefficients of higher orders of 4’. This 
is accomplished simply by making a, 0, E and o functions of q’, or related quantities, 
consistent with other models which predict the behaviour of the propagators. Obviously, 
the approach described above underscores a perturbative expansion of the symmetry 
breaking. 

3. Results 

It will be convenient to first enumerate the coupling constants in the scheme of mixing 
of 0 and 8 unitary meson components. The spectral functions for the spin 1 mesons 
are written in U(3), 

where the sets of indices {3,4,8,0> refer to the vector mesons { p ,  K*, 4, U}, or the 
corresponding axial vector mesons ( A , ,  K,, E ,  D } .  The set of mixing angles {ty, t,} 
designate {ey, 0,) for the vector mesons and { + y ,  +,} for the axial vector mesons. 
The subscripts Y and B also reference the hypercharge and baryon indices, 8 and 0. 
Similarly, for the spin 0 mesons, 
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where { 3,4,8,0) designate the pseudoscalar mesons {n, K ,  q, q ' )  and scalar mesons 
{a, ic, E, E'} about which little is known. In what follows, the scalar mesons are omitted. 
It is also advantageous to introduce the mixing angles l = 8 or II/, and x obtained from 
the first and third of equations (2.5) or (2.6) for the nondiagonal, singlet-octet excitations, 
pblJ and pi? 

WO m8 tan 5 = -tan tr = -tan tS 
m8 m0 (3.3) 

x = % y  = XB. 

The U(3) sum rules which result from equations (2.5) and (2.6) depend upon choices 
of A ,  B,  C, D and E as given in equation (2.7) and are summarized in tables 1, 2 and 3 
which give coupling constant and (mass)' 'sum rules. In tables 1 and 2 coupling constant 
relationships are given for the quantities { fp, fKI, f4, f,, e,, 0,) and { fAl,fKA, fE, fD, I)~, 
qB) .  The corresponding sum rules for the pseudoscalar coupling constants are the same 
in both q' limits, and are the usual unbroken U(3) results, 

(3.4) 

Table 3 lists both (mass)2 and (mass)-' sum rules resulting from elimination of the 
coupling constants. As mentioned before, the q' -+ 0 set of sum rules (equations (2.5)) 
lead to (mass)-' sum rule and the q' -+ CO set (equations (2.6)), to (mass)' sum rules. 

Table 4 gives the mixing angle and isovector masses obtained from consistent 
solution of the sum rules of table 3. Where two sum rules are given in table 3, m4, m8 
and mo are used to predict < and m 3 .  Where a single sum rule is given, m4, m a ,  mo and 

fi = fi = th'y = $hi .  

Table 1. Coupling constant sum rules for spin 1 mesons in the q2 + 0 current propagator 
limit in U(3) 

Case Coupling constant sum rule Reference 

c = o  
D = O  
E = O  

D = +C 
E = - iJ2C 

c = o  
E = O  

c = o  
c = o  
D = O  

E = O  
D = O  

D = O  

E = O  
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Table 2. Coupling constant sum rules for spin 1 mesons in the q2 -+ CO current propagator 
limit in U(3) 

~~ 

Case Coupling constant sum rules Reference 

c = o  
D = O  
E = O  

D = i C  
E = -fJX 

c = o  
E = O  

c = o  

c = o  
D = O  

E = O  
D = O  

D = O  

E = O  

Oakes(1968) 
Wienke and 
Deshpande 
(1969) 

3mi1; + 4m:I; = 12(mi sin2(, + m: c o s 2 ~ , ) l ~  -$mi cos 5, + m$ sin2(,)/; 
12(mi sin2(,+m~cos2(,)l-2-6m:l;2-t(m~ cos2(,+m: sin2(,)l;2 (1969) 

4m3;  - m i / ;  = $mi  cos2(,+ m: sin2<,)/; Schwinger 
2m:l; - $(m$cos2 <,+ m:sin2(,)l; = &nicost;,sin (, - m:sin(,cos(,)I, ' I ;  ' (1964) 

Chan et al 

= a m i  cos 5 ,  sin ( , -m:  sin 5 ,  cos 5,)l; ' I ;  ' 

Das et a1 
(1967) 

Table 3. Mass sum rules for spin 1 and spin 0 mesons in the 42 -+ 0 and q2 -+ CO current 
propagator limit in U(3) 

Case Mass sum rule Reference 

c = o  
D = O  
E = O  

D = i C  
E = -+,,/2C 

c = o  
E = O  

c = o  
c = o  
D = O  

E = O  
D = O  

D = O  

E = O  

Oakes (1968) 
Wienke and 
Deshpande (1969) 

3m:2+4md2 = 8 ( m i 2  sin2r+mi2 cos2()-(m:2cos2<+mi2sin2<) 
8 ( m i 2  sin2<+mi2 ~ o s ~ ( ) - 6 m ~ ~ - 2 ( m ~ ~  cos2(+md2 sin2() 

4 m h 2 - m i 2  = 3(mi2 cos2(+mi2 sin2() 
2mh2 - 2(mi2 cos2( + m$ sin2 () = $J2(mf - mf 2 ,  sin 25 

4ma2-m:' = 3(mf2 cos2(+m,i2 sin2() 

4mh2 - m: = 3(mf cos2 ( + m i  sin2 5) 
2mh2 = m,i2+m:2 

m: + 2m; = 3 ( m f 2  sin2( + m$ cos2 5) 
mh2 - (mf sin2 ( + m: cos2() = iJ2(m$ - mf 2 ,  sin 25 

m:'+2mf2 = 3(mf2 sin2 (+mi2cos2() 

m:' - mh2 = &/2(m$ - m i z )  sin 25 

Chanetal(l969) 

= t J 2 ( m i  - m i  2,  sin 2( 

Schwinger (1964) 

Das et al(l967) 
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m3 are used to determine 5. The case C = D = E results in an independent determina- 
tion of the mixing angle such that 

tan 25 = 2 J2 

m3 = m,. 
and 

From table 4 it  is obvious that the U(3) breakings examined adequately describe 
the vector mesons, but are inadequate for the axial vector and pseudoscalar mesons. 
Dropping the requirement of consistency of the sets of sum rules would allow determina- 
tion of the mixing angle (or m3, m4, m8, m,, given 5) from one or another equations. 
The question of which equation, can be dictated by consideration of SU(3) symmetry 
for the lowest order spectral moment integrals. 

If in equations (2.5) and (2.6) we split off the unitary singlet contributions to the 
spectral integrals by writing 

we suppress the contributions of the spectral functions pblJ and pboJ in the calculation 
and obtain sum rules in SU(3). The effect of s ( ~ ) ’  is to scale the singlet contribution 
differently from the octet contributing pieces. In equation (3.4), the term $hi  does not 
appear and the effects on the sum rules given in tables 1, 2 and 3 are easily explained 
rather than retabulated. In table 1, where two or more sum rules appear for particular 
choice of C, D or E ,  the prescription is to eliminate 1;’ from the equations, reducing 
the number of sum rules by one. If this is not possible, the sum rule with 1;’ is sup- 
pressed. In table 2, the identical procedure is applied to the combination 
(m: sin’ tB + m: cos2 ’ and in table 3 to the combination (mz ’ sin’ 5 + m$’ cos’ 5) .  
In addition in table 3 the two conditions m:’ = m$2, tan 25 = 2 J2 no longer hold and 
the bare combination ( m i  ’ + m$ ’) is replaced by $(m:’ + 3(mt ’ cos’ 5 + m$ ’ sin2 t)}. 
A number of the resulting sum rules are well known for SU(3) (Gell-Mann 1962, 1964, 
Oakes and Sakurai 1967, Das et a1 1967, Oakes 1968, Wienke and Dashpande 1969). 

In table 5, predictions of isovector masses and mixing angles, following solution 
of the SU(3) mass sum rules as modified above for table 3, are given. The procedures 
yielding table 4 are again followed in compiling table 5. It is simple to see in table 5 
that the cases reported result from a single sum rule which is usdd as a prediction of 
the mixing angle except the particular case C = 0, E = 0 which is identical to the 
corresponding case in table 4 for U(3) symmetry. The set of mixing angles, (39.9, NS, 9.3) 
for (mass)’ and (28.8, 67.9, NS) for (mass)-2 sum rules, result from the well known Gell- 
Mann-Okubo mass formula (Gell-Mann 1961, Okubo 1962) in its (mass)*’ form 

4 m f 2 - m i 2  = 3(mi2 cos’ (+m$’ sin’ 5) (3.8) 
which is traditionally used to define the SU(3) mixing angles in the (mass)’ case for the 
meson octets. The mixing angle and isovector mass predictions listed for the vector, 
axial vector and pseudoscalar mesons in tables 4 and 5 are to be compared with their 
experimental values : 

mp = 765 MeV, e = 39.50-22.40 

m A 1  = 1070MeV, $ = unknown 

m, = 140MeV, x = 10.4”, 
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given by the Particle Data Group (1971). Simultaneous prediction of the isovector 
mass and mixing angle is precluded for the pseudoscalar and axial vector mesons, as 
seen in tables 4 and 5, but not for the vector mesons. Since the experimental estimates 
of mp and 8 vary within the range given in tables 4 and 5, the sum rules given seem 
appropriate for the vector mesons. Further experimental refinement is necessary, 
however, to distinguish between the different symmetry breaking schemes listed. 

We have concentrated this analysis on the 0-, 1 + ,  and 1 -  octets and nonets of 
mesons. Similar analysis for higher order J p  candidates might prove interesting and 
the hope is to report these findings later. 
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Appendix 

A brief discussion of symmetry breaking, mass and current mixing as applied in this 
analysis is given for completeness. 

The most general isospin conserving, symmetric, unitary symmetry breaking inter- 
action can be written in the form 

corresponding to a nonet of non-zero mass particles ( A  # 0) split into four isospin 
multiplets. To obtain t ab  for singlet @octet @twenty-sevenplet breaking we take octet 
matrix elements of an operator k, containing pieces that transform as a singlet, octet and 
twenty-sevenplet and equate them to the right hand side of equation ( A . l )  : 

tab = (alk'lb) + (alk81b) + ( ~ l k ~ ~ l b )  

and find after obtaining Clebsch-Gordan coefficients 

t 1 1  = t 2 2  = t , ,  = A + B / J 3  = - J i ( k ' ) +  J + ( k 8 ) +  J&(k27)  
t 4 4  = t , ,  = t 6 6  = t 7 7  = A - B / J 1 2  = - J i ( k ' ) -  J & ( k 8 ) -  J & ( k 2 7 )  

t 8 8  = A - B / J 3 + C  = - J i ( k ' ) -  J + ( k 8 ) +  J g ( k 2 ' )  (A.3) 
too = A + D  = - J i ( k ' )  

t o 8  = t a0  = J + B + E  = J + ( k 8 )  

with ( k ' ) ,  ( k 8 )  and ( k 2 ' )  the reduced matrix elements of the singlet, octet and twenty- 
sevenplet transforming pieces. Obviously, for pure singlet @octet splitting, ( k 2 7 )  = 0 
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and for singlet @octet @twenty-sevenplet breaking, 

A = - J i ( k ’ ) - a J J - ( k 2 7 )  3 1 2 0  

B = J + ( k 8 ) + $ J & ( k 2 ’ )  

C = $! J&(k2’)  ( A S )  

D = &C 

E = -4J2C. 

The absolute values of ( k ’ ) ,  ( k 8 ) ,  ( k 2 - ) ,  (or A ,  B, C, D, E )  are unimportant since those 
constants are eliminated in obtaining the sum rules. 

The choice C = E = 0 gives the above octet breaking, without mixing, while splitting 
off the singlet piece in the nonet U(3) scheme (Schwinger 1964), while C = 0 allows 
for mixing (Das et a1 1967). Other choices for the parameters as listed in tables 1-4 
are given for completeness and do  not correspond to any generally employed symmetry 
breaking mechanisms. 

The respective terms mass mixing and current mixing (Coleman and Schnitzer 
1964, Kroll et a1 1967) refer to the symmetry properties of the mass and kinetic terms 
in some assumed lagrangian describing the spin 0 and spin 1 meson and their couplings. 
If the kinetic terms transform as some representation of assumed symmetry group for 
the lagrangian, we speak of current (or vector) mixing. If the mass terms, instead, 
transform as some representation, we refer to this as mass (or particle) mixing. Mass 
mixing is a simple and reasonable starting point for the spin 0 mesons that can also be 
described within the framework of a Schrodinger equation acting on the space of one- 
particle states. Within the framework of the pole approximations, mass mixing has 
been a suitable approximation for describing a large class of interactions of spinless 
mesons. However, for vector particle interactions mass mixing is inconsistent. Among 
a number of other important considerations, mass mixing for the vector mesons destroys 
the U(3) commutation relationships of equations ( 1 . 1 )  and the symmetry of the c number 
Schwinger terms assumed for this analysis. Furthermore, current mixing has been 
shown (Oakes and Sakurai 1967) to be the only theory of CIF+ mixing compatible 
with the sum rules of Weinberg (equation (1.3)). 
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